
ORIGINAL ARTICLE

doi:10.1111/evo.12931

Color phenotypes are under similar genetic
control in two distantly related species
of Timema stick insect
Aaron A. Comeault,1,2,3 Clarissa F. Carvalho,1 Stuart Dennis,1,4 Vı́ctor Soria-Carrasco,1 and Patrik Nosil1

1Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
2Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516

3E-mail: aacomeault@gmail.com
4Eawag, Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf,
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Ecology and genetics are both of general interest to evolutionary biologists as they can influence the phenotypic and genetic

response to selection. The stick insects Timema podura and Timema cristinae exhibit a green/melanistic body color polymorphism

that is subject to different ecologically based selective regimes in the two species. Here, we describe aspects of the genetics of this

color polymorphism in T. podura, and compare this to previous results in T. cristinae. We first show that similar color phenotypes

of the two species cluster in phenotypic space. We then use genome-wide association mapping to show that in both species, color

is controlled by few loci, dominance relationships between color alleles are the same, and SNPs associated with color phenotypes

colocalize to the same linkage group. Regions within this linkage group that harbor genetic variants associated with color exhibit

elevated linkage disequilibrium relative to genome wide expectations, but more strongly so in T. cristinae. We use these results to

discuss predictions regarding how the genetics of color could influence levels of phenotypic and genetic variation that segregate

within and between populations of T. podura and T. cristinae, drawing parallels with other organisms.
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Recent advances in sequencing technologies have facilitated

a proliferation of studies describing genomic patterns of dif-

ferentiation between species or populations found in different

geographical or ecological contexts (Hohenlohe et al. 2010;

Ellegren et al. 2012; Jones et al. 2012; Nadeau et al. 2012;

Poelstra et al. 2014; Soria-Carrasco et al. 2014). While in some

cases genetic regions showing accentuated differentiation harbor

genes that are known to underlie traits involved in adaptation

(Dasmahapatra et al. 2012; Poelstra et al. 2014), the phenotypic

effects of the genes contained within such “outlier” regions is

typically unknown. Identifying genetic regions harboring adap-

tive loci is thus a key goal in evolutionary biology, and can facil-

itate subsequent tests of how selection affects patterns of genetic

differentiation.

Even if the specific genes controlling adaptive phenotypes

are unknown, general aspects of their genetics, such as numbers

of loci underlying phenotypic variation, dominance relationships

between alleles, and the genomic locations of adaptive genes can

provide insight into the evolutionary process (Rausher and Delph

2015). For example, when adaptation is the result of many loci,

each having small effects on phenotypic variation, the genetic

response to selection is expected to result in minor and even

transient shifts in allele frequencies across loci (Pritchard et al.

2010; Berg and Coop 2014; Yeaman 2015). This scenario can

contrast one where strong genetic differentiation can be observed

as a result of selection acting on traits controlled by few loci, each

having large phenotypic effects (Nadeau et al. 2012; Poelstra

et al. 2014). Thus, whether traits are highly polygenic versus
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controlled by few loci of large effect has implications for patterns

of genomic differentiation.

Additional aspects of genetic architecture, such as domi-

nance relationships among alleles and localized patterns of link-

age disequilibrium (LD), will also affect the response to selection.

For example, dominance relationships between alleles can affect

whether an allele’s phenotypic effects are expressed and thus vis-

ible to selection (Haldane 1927; Charlesworth 1992; Rosenblum

et al. 2010). Patterns of LD in genomic regions harboring alleles

involved in adaptation will influence the genomic extent to which

selection will affect genetic differentiation: if LD is high, selec-

tion can have impacts across a broad genomic region, while low

LD is expected to result in more localized effects (Maynard Smith

and Haigh 1974; Barton 2000). Understanding these aspects of

the genetics of traits has important implications for understand-

ing patterns of differentiation and segregation among and within

populations, respectively.

Here, we study the genetics of a green/melanistic color poly-

morphism found in two species of Timema stick insects. The

genus Timema is comprised of �21 species of herbivorous in-

sects that are endemic to southwestern North America and show

a wide range of within- and among-species variation in body col-

oration (Sandoval et al. 1998). This variation is known to be of

adaptive significance, for example in crypsis and the avoidance of

visual predation by lizards and birds (Sandoval 1994; Sandoval

and Nosil 2005). Similar color phenotypes frequently segregate

as polymorphisms in distantly related species of Timema (Crespi

and Sandoval 2000), providing a well-suited system for address-

ing questions regarding the ecology and genetics of the evolu-

tion of adaptive color phenotypes. Timema podura and Timema

cristinae are two species that both display an intraspecific poly-

morphism in color (Fig. 1). These species are estimated to have

diverged from a common ancestor approximately 20 million years

ago (Timema have a single generation per year; Sandoval et al.

1998) and represent an interesting opportunity to study the evo-

lution of color because it is unclear whether a similar genetic

basis is expected to control similar phenotypes in species that

diverged so long ago (Conte et al. 2012). The goals of this study

are therefore to (1) quantitatively describe similarities (and dif-

ferences) in color between T. podura and T. cristinae, (2) de-

termine aspects of the genetic control of color in T. podura—

including the number of loci underlying this variation and dom-

inance relationships between alleles—to facilitate comparisons

with that of T. cristinae, (3) compare patterns of LD observed

within genomic regions containing candidate SNPs associated

with color in both T. podura and T. cristinae, and (4) generate

predictions regarding how aspects of genetics might influence ge-

netic differentiation in each species, which can be tested in future

work.

Figure 1. (A) Representative images of melanistic and green phe-

notypes for T. podura and T. cristinae. (B) Phenotypic position of 42

T. podura and 602 T. cristinae in RG – GB color space. Hashed lines

in “B” represent the range of RG (horizontal line) and GB (vertical

line) values for T. podura phenotypes and the size of the symbols

is proportional to an individual’s luminance.

Methods
STUDY SYSTEM

Timema cristinae is endemic to the coastal chaparral of the west-

ernmost mountains of the Transverse Ranges of southern Cal-

ifornia and is primarily found on the two host plants Ceano-

thus spinosus (Rhamnaceae) and Adenostoma fasciculatum

(Rosaceae). Within T. cristinae, green and melanistic color pheno-

types segregate as a polymorphism and the frequency of the color

phenotypes does not differ between populations inhabiting differ-

ent species of host plants (Comeault et al. 2015). Green individuals

of this species can also express a dorsal white stripe, however this

trait is not expressed in melanistic individuals (Comeault et al.

2015) and thus we do not deal with it here. The color phenotypes

of T. cristinae are maintained within populations due to a balance

of selective agents that are similar between hosts and include se-

lection for crypsis in leafy (green favored) and woody (melanistic

favored) plant microhabitats, differences in fungal infection rates,
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Table 1. Summary of the ecology of the two species of Timema stick insects included in this study.

Host plants Selection on
Species Location considered here color phenotypes

T. cristinae Coastal western
Transverse Range,
Southern California

C. spinosus, A.
fasciculatum

Balance of multiple
sources of selection,
often within host
species, maintains
polymorphism.

T. podura San Bernardino, Santa
Rosa, and San Jacinto
Mountains, Central
Southern California

C. leucodermis, A.
fasciculatum

Divergent selection
acting between host
plants.

and potential fitness differences associated with climatic variation

(Table 1). Classical genetic crosses and genome wide association

(GWA) mapping indicate that T. cristinae color phenotypes are

under simple Mendelian control with most variation in color be-

ing explained by a single region on linkage group 8 (LG 8), with

the green allele dominant to the melanistic allele (Comeault et al.

2015).

The other species we consider, T. podura, is endemic to the

San Bernardino, Santa Rosa, and San Jacinto Mountains of cen-

tral southern California and also inhabits host plant species in

the genus Ceanothus (C. leucodermis) and Adenostoma (A. fas-

ciculatum). Like T. cristinae, T. podura display either a green

or a melanistic color phenotype (Fig. 1; melanistic individuals

have also been referred to as “gray” or “red”; Sandoval and Nosil

2005). Unlike T. cristinae, the frequency of T. podura color phe-

notypes is different between populations living on different host

species: green T. podura are, to current knowledge, not found on

A. fasciculatum (Sandoval and Nosil 2005). Experiments have

shown that avian predators preferentially depredate melanistic in-

dividuals when on C. leucodermis (potentially due to the light

green color of C. leucodermis branches) and green individuals

on Adenostoma (Sandoval and Nosil 2005). Thus, in contrast to

T. cristinae, there is evidence for divergent selection acting on

T. podura color phenotypes between host species (Table 1). The

maintenance of melanistic T. podura on C. leucodermis could be

due to gene flow between populations found on different hosts, as

documented in T. cristinae at spatial scales similar to those sepa-

rating populations of T. podura on different hosts (Sandoval and

Nosil 2005; Nosil et al. 2012). Aspects of the genetics of color

(such as dominance relationships among alleles) could also con-

tribute to the maintenance of maladaptive phenotypic variation,

but until now have remained unknown.

QUANTIFYING VARIATION IN COLOR

To quantitatively measure color we recorded digital images of

42 adult T. podura collected from a phenotypically variable pop-

ulation found on C. leucodermis plants (population code: BSC;

33.816°N, –116.790°W) and 602 T. cristinae found on A. fas-

ciculatum (FHA; 34.518°N, –119.801°W). The 602 T. cristinae

images have previously been used to qualitatively describe color

(classified as green vs. nongreen; Comeault et al. 2015), while

here we report novel analyses that quantitatively describe color in

a manner that allows direct comparison between the two species.

All digital images were recorded under standard conditions and

color and exposure were corrected in postprocessing (SI).

For each image we first recorded RGB values of the lateral

margin of the second thoracic segment for each individual us-

ing the color histogram plugin in ImageJ (Abràmoff et al. 2004).

For each individual we then summarized variation in red-green

color (RG) using the relationship (R–G)/(R+G), green-blue color

(GB) as (G–B)/(G+B), and luminance (i.e., brightness; L) as

(R+G+B) (Endler 2012). While this method of measuring color

does not take into account the visual system of the receiver or the

light environment an object is viewed in, it does represent an un-

biased measurement of color that can be useful in a comparative

context. Because T. cristinae does not reflect UV light (Comeault

et al. 2015) the digital images we use here likely capture a ma-

jority of the biologically relevant differences between the color

phenotypes.

We quantified phenotypic overlap between T. podura and T.

cristinae color morphs using RG, GB, and L values. First, we used

linear models assuming normally distributed error to compare RG,

GB, and L values between green and melanistic T. podura color

phenotypes, green and melanistic T. cristinae color phenotypes,

green T. podura and green T. cristinae, and melanistic T. podura

and melanistic T. cristinae. We also analyzed the position of the

different colors in phenotypic space using an approach analogous

to that used by Beuttell and Losos (1999) to quantify clustering of

Anolis ecomorphs in multivariate phenotypic space. Specifically,

we first calculated the Euclidean distance between all individuals

in our sample (i.e., all pairwise comparisons) in RG–GB color

space. We then used Wilcoxon signed rank tests to determine
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whether phenotypic distances observed between the same color

phenotypes of the two species (i.e., T. podura and green T. cristi-

nae or melanistic T. podura and melanistic T. cristinae) were less

than the phenotypic distance between different colored individu-

als of the same species. These analyses enabled us to ask whether

the same color phenotypes of the two species are closer to each

other, in phenotypic space, than to the alternate color phenotype

of their own species. All statistical analyses were carried out in R

(R Core Team 2016).

GENOMIC SAMPLING OF T. podura

We extracted whole genomic DNA from 50 T. podura (19 green

and 31 melanistic) that included the same 42 individuals used to

quantify color and eight additional individuals sampled from the

same population that were not photographed (but were qualita-

tively scored as “green” or “melanistic”) using Qiagen DNeasy

blood and tissue kits (Qiagen). We then used the method of

Parchman et al. (2012) to generate individually barcoded

restriction-site associated DNA libraries for each of these 50

individuals (SI). We pooled these 50 libraries with an addi-

tional 48 uniquely barcoded libraries that were part of another

study, selected for fragments ranging in size from 300 to 500 bp

with Pippin-prep targeted size selection (Sage Science, Inc., MA,

USA), and sequenced on a single lane of the Illumina HiSeq2000

platform using V3 reagents at the National Center for Genome

Research (Santa Fe, NM, USA). Raw sequence reads have been

archived under NCBI BioProject PRJNA318846.

We removed barcodes and the following six bp of the EcoRI

cut site from raw sequence reads, while allowing for single bp

errors in the barcode sequence due to synthesis or sequencing

error, using a custom Perl script developed and implemented

in Nosil et al. (2012). Following removal of barcode sequences

this resulted in a total of 130,280,785 raw sequence reads with

an average of 2,605,616 reads per individual (95% interval =
1,351,013–3,356,050) and an average length of 83 bp (95% inter-

val = 63–86). We aligned 90,923,479 of these reads (69.8%) to the

reference genome sequence of T. cristinae (Soria-Carrasco et al.

2014) using BOWTIE2 version 2.1.0 (Langmead and Salzberg

2012) with the local model and the “–very-sensitive-local” preset

(-D 20 -R 3 -N 0 -L 20 -i S,1,0.50). We used SAMTOOLS version

0.1.19 (Li et al. 2009) to sort and index alignments. We used the

reads mapped to the T. cristinae genome to generate a reference

consensus sequence of T. podura using SAMTOOLS “mpileup,”

and BCFTOOLS. We used vcfutils.pl with the “vcf2fq” com-

mand to filter out positions with a number of reads below eight

and above 500, as well as those with a phred-scale mapping qual-

ity score lower than 20. Filtered sites were coded as missing data.

Subsequently, we used BOWTIE2 with the same arguments used

above to align 100,095,223 raw reads (76.8%) to this reference

consensus. As before, the alignments were sorted and indexed

with SAMTOOLS.

Variants were called using SAMTOOLS “mpileup” and

BCFTOOLS using the full prior and requiring the probability

of the data to be less than 0.5 under the null hypothesis that all

samples were homozygous for the reference allele to call a vari-

ant. Insertion and deletion polymorphisms were discarded. We

identified 638,828 single nucleotide polymorphisms (SNPs) that

were reduced to 137,650 SNPs after discarding SNPs for which

there were sequence data for less than 40% of the individuals,

low confidence calls with a phred-scale quality score lower than

20, and SNPs with more than two alleles. Average depth of the

retained SNPs across all individuals was �460× (mean coverage

per SNP per individual �9×).

We used a custom Perl script to calculate empirical Bayesian

posterior probabilities for the genotypes of each individual and

locus using the genotype likelihoods and allele frequencies esti-

mated by BCFTOOLS along with Hardy–Weinberg priors (i.e.,

p(A) = p2; p(a) = (1 – p)2; p(Aa) = 2p(1 – p)). We then computed

the posterior mean genotype scores for each individual, at each

locus, by multiplying the probability of the homozygous minor

allele genotype by two and adding the probability of the het-

erozygous genotype. These imputed genotype scores range from

zero to two and represent the dosage of the minor allele in a given

genotype. All imputed genotype scores were saved in bimbam file

format. These imputed genotypes were used for multilocus GWA

mapping analyses and principal components analyses (PCAs) de-

scribed below. Because other analyses (e.g., analyses of linkage

disequilibrium and single-SNP GWA mapping) required discrete

genotypic data, we collapsed imputed genotype scores into three

discrete genotypic values: imputed genotypes ranging from 0 to

0.6 (inclusive) were scored as homozygous for the minor allele,

imputed genotypes between 0.6 and 1.4 were scored as heterozy-

gous, and imputed genotypes greater than or equal to 1.4 were

scored as homozygous for the major allele.

GENETIC STRUCTURE WITHIN THE T. podura SAMPLE

Population structure can confound GWA mapping studies

(Freedman et al. 2004; Price et al. 2006). Although this is un-

likely to be a major issue in our dataset because T. podura were

sampled in a single locality at the scale of only hundreds of

meters, we nonetheless tested for genetic structure using two

approaches. First, we used a hierarchical Bayesian model that

jointly estimates genotypes and admixture proportions as imple-

mented in the program ENTROPY (available from Gompert et al.

2014). This model is similar to the popular STRUCTURE algo-

rithm (Pritchard et al. 2000), but accounts for sequencing error

and genotype uncertainties inherent to next-generation sequenc-

ing methods (for comparable approach see Skotte et al. 2013). We
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estimated parameters for models with K = 1–4 population clusters

and used the deviance information criterion (DIC) to determine

the number of clusters most appropriately represented by our data

(Spiegelhalter et al. 2002; see SI for details).

In addition to hierarchical Bayesian modeling, we carried out

a PCA on the matrix of imputed genotype scores using the “pca”

function in the R library PCAMETHODS. We then assessed the

number of PCs that significantly described genetic variation using

the Q2 cross-validation statistic (Krzanowski 1987) as calculated

using the argument “cv = ‘q2’” within the “pca” function. The

value of Q2 represents a measure of the explained variation of

a given PC relative to random expectations and is calculated as

1 – (predicted residual sum of squares/residual sum of squares)

(Krzanowski 1987; Abdi and Williams 2010). We interpreted PCs

with Q2 > 0.05 as capturing a significant amount of variation in

our data (Abdi and Williams 2010). To determine whether phe-

notypic variation in color was concordant with genetic variation

described by significant PCs, we fit generalized linear models

with binomial error terms for each PC, where the PC score was

the predictor variable and color was the response variable. If a

PC explained a significant amount of variation in color (as de-

termined using likelihood ratio tests and a Bonferroni-corrected

alpha = 0.0036), we assessed the strength of that PC’s association

with color phenotypes using the proportional increase in residual

deviance explained by that model relative to the null (i.e., pseudo

R2; Dobson 2002). As described in the Results, these analyses

show there is no major axis of genetic variation that is correlated

with color phenotypes in our dataset. Nonetheless, we account

for relatedness and population structure in our GWA analyses as

described below.

GENETIC CONTROL OF T. podura COLOR PHENOTYPES

ESTIMATED THROUGH GWA MAPPING

We first estimated aspects of the genetic basis of color phenotypes

in T. podura using multilocus Bayesian sparse linear-mixed mod-

els (BSLMMs) as implemented in the software package GEMMA

(Zhou and Stephens 2012; Zhou et al. 2013). Because T. po-

dura color phenotypes were completely nonoverlapping in two-

dimensional color space (Fig. 1B) we unambiguously scored each

of the 50 genotyped individuals as green (n = 19) or melanistic

(n = 31) and ran probit BSLMMs in GEMMA (as done previously

for green and melanistic phenotypes of T. cristinae: Comeault

et al. 2015). Multilocus association mapping in GEMMA ac-

counts for both relatedness among individuals and LD between

SNPs by including a genomic kinship matrix as a random effect

and estimating SNP effect sizes while controlling for other SNPs

included in the model, respectively (Zhou et al. 2013).

Bayesian sparse linear-mixed models as implemented in

GEMMA also provide useful estimates of hyperparameters that

quantitatively describe the genetics of traits (Zhou and Stephens

2012; Zhou et al. 2013; see Discussion). These hyperparame-

ters include the total phenotypic variation explained by all SNPs

(proportion of phenotypic variation explained; PVE), the propor-

tion of PVE that can be explained by “measurable-effect” SNPs

that have nonzero, and detectable, effects on phenotypic variation

(PGE) that are independent of the kinship matrix included in the

model, and the number of independent genomic regions needed

to explain the PVE (n-SNPs; the number of SNPs where the rela-

tionship between genotype and phenotype [β] is estimated to be

greater than zero).

We implemented BSLMMs in GEMMA using 10 indepen-

dent Markov-chain Monte Carlo (MCMC) chains ran for 25 mil-

lion steps with an initial burn-in period of 5 million steps. Param-

eter values estimated by BSLMMs were recorded every 100 steps

and written every 10,000 steps. All additional options in GEMMA

remained at default values and SNPs with minor allele frequen-

cies < 0.01 were excluded from these analyses (121,435 SNPs

retained). Here, we report the median and 95% credible interval

(95% equal tail posterior probability intervals [95% ETPPIs]) for

PVE, PGE, PVE × PGE (an estimate of the total phenotypic vari-

ation explained by only SNPs with large phenotypic effects), and

n-SNP. To assess the strength of the genetic signal in our dataset

to accurately estimate hyperparameters we carried out both per-

mutation tests and cross-validation using genomic prediction (SI).

In addition to the hyperparameters described above,

GEMMA provides the posterior inclusion probability (PIP) and

estimates the phenotypic effect (β) of each SNP that is identified

as having a nonzero effect on phenotypic variation in at least

one model iteration. PIP is computed as the proportion of model

iterations that a given SNP is identified as having a nonzero β.

SNPs that are more strongly associated with phenotypic variation

are therefore expected to have large PIPs and these SNPs are the

strongest candidates of being linked to the functional variant(s)

underlying phenotypic variation. Thus, the magnitude of the PIP

of a SNP reflects the weight of evidence that that SNP is associated

with variation in T. podura color phenotypes.

For comparison with multilocus GWA mapping analyses, we

also implemented single-SNP GWA mapping. This analysis was

carried out following the EIGENSTRAT method of Price et al.

(2006) as implemented in the GENABEL R library (Aulchenko

et al. 2007). Prior to single-SNP GWA mapping we remove SNPs

with minor allele frequencies less than 0.01, individuals with call

rates < 0.95, individuals with the proportion of alleles identical-

by-state (IBS) > 0.95, and individuals with abnormally high

levels of heterozygosity (false discovery rate < 0.01) with the

“check.marker” function in GENABEL (Aulchenko et al. 2007).

We also excluded SNPs that were out of Hardy–Weinberg equi-

librium using the “check.marker” function, setting the “p-level”

option to 0.0001. These conditions resulted in all 50 individuals

and 85,291 SNPs being retained for single-SNP GWA mapping.
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We adjusted for population structure in this analysis by includ-

ing the first 14 axes of genetic variation generated from a PCA

of the genomic kinship matrix (14 axes is the number that de-

scribe a significant amount of genetic variation in our sample, see

Results).

COLOCALIZATION OF REGIONS ASSOCIATED WITH

COLOR IN THE TWO SPECIES

Because we found SNPs mapping to LG 8 to have the largest

mean PIP in both T. cristinae and T. podura (see Results), we

tested whether this pattern is expected by chance using permu-

tation tests. The purpose of this analysis was to determine the

probability of colocalization of SNPs with high PIPs to LG 8

while accounting for (1) the genomic distribution of SNPs in

our dataset and (2) the distribution of PIPs observed for these

SNPs. We therefore randomly permuted PIPs (without replace-

ment) 10,000 times for both the T. podura and T. cristinae SNP

datasets. During this permutation procedure the number and loca-

tion of SNPs along each linkage group was maintained. We then

calculated the proportion of permuted datasets for which LG 8

had the largest mean PIP in both species as our null expectation.

DOMINANCE RELATIONSHIPS AT CANDIDATE LOCI

We next determined dominance relationships at the T. podura can-

didate SNPs identified by GWA mapping by calculating the ratio

of dominant to additive effects of alleles at each of these SNPs (for

parallel analysis in T. cristinae see Comeault et al. 2015). Because

color phenotypes are discrete and unambiguously scored (Fig. 1),

each green individual was assigned a score of 0 and each melanis-

tic individual a score of 1. Dominance effects (d) were calculated

as the difference between the mean phenotype of heterozygotes

and half difference between the mean phenotypes of the two ho-

mozygous genotypes. Additive effects (a) were calculated as half

the phenotypic difference between the mean phenotype of the two

homozygous genotypes. The ratio d/a represents the deviance of

the phenotypes of heterozygotes from those expected under addi-

tivity (Burke et al. 2002; Miller et al. 2014). The expected value

of d/a for additive alleles is 0 while completely dominant or reces-

sive alleles will be 1 or –1. Here, we follow previous conventions

(Burke et al. 2002; Miller et al. 2014) and classify alleles as being

dominant if d/a is greater than 0.75, recessive if d/a is less than

–0.75, partially dominant or partially recessive if d/a is between

0.75 and 0.25 or –0.75 and –0.25, respectively, and additive if d/a

is between –0.25 and 0.25.

LINKAGE DISEQUILIBRIUM BETWEEN CANDIDATE

SNPS AND WITHIN CANDIDATE GENOMIC REGIONS

To quantify levels of LD for candidate genomic regions identi-

fied by GWA mapping, we computed genotypic correlations (r2)

for the regions spanned by all candidate SNPs mapping to LG

8 of the T. cristinae genome (i.e., the entire region between the

“left-most” and “right-most” SNP on this LG, considering a linear

genomic organization). We focused on LG 8 because this linkage

group contained the strongest evidence for containing variants

associated with color phenotypes in both species (see Results).

We carried out all LD analyses described below in parallel for T.

podura and T. cristinae using SNPs that passed the same filters

described for those used in single-SNP GWA mapping. For T.

cristinae we used a previously published dataset used to iden-

tify candidate SNPs associated with color (Comeault et al. 2015;

sequence data archived under NCBI BioProject PRJNA284835))

with the same filtering applied to the T. podura dataset. Prior to

LD analyses in T. cristinae we randomly downsampled the num-

ber of individuals to match that of T. podura (i.e., 19 green and

31 melanistic individuals). All LD analyses were carried out us-

ing the “r2fast” function of the GENABEL R library (Aulchenko

et al. 2007).

Following filtering we computed LD between each candi-

date SNP (all pairwise comparisons), all SNPs contained within

the candidate genomic region on LG 8, SNPs found within regions

of LG 8 that did not contain candidate SNPs (hereafter “noncan-

didate region”), and SNPs randomly sampled from across the

genome. Within candidate and noncandidate regions we retained

a single SNP per sequence read (i.e., 100 bp) as to not inflate

estimates of LD due to mapped sequences containing multiple

SNPs. Following this procedure, we calculated r2 between all

SNPs located on the same scaffold for each scaffold within a

given region. We restricted LD comparisons to SNPs found on

the same scaffold because we were interested in localized LD and

the absolute distance between SNPs on different scaffolds of the

current draft of the T. cristinae (v0.3) genome is unknown. To

estimate “background” levels of LD within the genome we ran-

domly sampled 1000 SNPs from across the genome (i.e., using

all LGs) and calculated LD for all pairwise comparisons.

To determine whether LD between the candidate SNPs,

within candidate regions, and within noncandidate regions was

greater than null genomic expectations, we compared the propor-

tion of pairwise LD comparisons for a given class of SNPs to

median LD of the random genomic sample of 1000 SNPs using

binomial tests. The genomic expectation for this analysis is that

50% of LD comparisons within a given class will be below and

above median genomic LD.

In addition to quantifying LD within defined genomic re-

gions, we measured the decay of LD with distance for each of

the 13 linkage groups of the T. cristinae genome by computing

the mean and 99% empirical quantile of r2 as a function of the

distance between SNPs. Measurements of LD were binned into

100 bp bins depending on the distance between the two SNPs

used to calculate LD (e.g., estimates of LD for all SNPs 301–400

bp apart were binned into one bin).
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Results
QUANTIFYING VARIATION IN COLOR

Within T. podura the green and melanistic phenotypes dif-

fer with respect to RG and GB color (F1 ,40 = 158.92,

P < 0.001; F1, 40 = 126.66, P < 0.001) but not luminance (F1, 40

= 3.76, P = 0.06). Within T. cristinae the color phenotypes dif-

fer in RG color, GB color, and luminance (F1, 600 = 1050.90,

P < 0.001; F1, 600 = 52.07, P < 0.001, respectively). Compar-

ing color phenotypes between species reveal that melanistic T.

podura do not differ from melanistic T. cristinae in GB color

(F1, 82 = 1.68, P = 0.20) but have significantly different RG

color (F1, 82 = 4.371, P = 0.04) and luminance (F1, 82 = 29.05, P

< 0.0001). Green T. podura differ from green T. cristinae in RG

color, GB color, and L (F1, 558 = 25.14, P = 0.004; F1, 558 = 44.28,

P < 0.001; F1, 558 = 41.53, P < 0.001, respectively).

Despite some difference in color between T. podura and T.

cristinae, both green and melanistic color phenotypes broadly

overlap in RG – GB color space and the Euclidean distances be-

tween similarly colored individuals of each species were much

less than the Euclidean distances between differently colored in-

dividuals within species (mean [SE] Euclidean distance between

T. podura and T. cristinae having the same color = 0.193 [0.0011]

and between differently colored T. podura = 0.377 [0.0050] or T.

cristinae = 0.501 [0.0006]; Fig. 1B). Therefore, while there are

slight differences in the color phenotypes of T. podura compared

to those of T. cristinae, similar color phenotypes cluster tightly in

phenotypic space and are more similar to each other than to differ-

ently colored individuals of their own species (U = 315,985,777,

P < 0.0001; Fig. 1B).

GENETIC STRUCTURE WITHIN THE T. podura SAMPLE

To test for potential genetic structure within our sample of 50

T. podura, we carried out hierarchical Bayesian modeling and

PCA on the imputed genotype matrix. DIC increased with the

number of clusters in hierarchical Bayesian models ran with

K = 1 – 4 and the model receiving the highest support was

that with K = 1 (Table S1). When models were run with K

> 1, we did not observe any distinct clustering of individuals

based on color phenotype (Fig. S1). Principal components anal-

ysis of genotype likelihoods identified 14 axes that describe a

significant amount of genetic variation based on a threshold of

Q2 > 0.05 (Table S2). Together, these 14 PCs explained a cumu-

lative 53.59% of the variation in genotypes and PC1 accounted

nearly half (26.59%) of this variation. Binomial regressions of

color phenotype against PC scores revealed that only two of the

14 PCs (PC4 and PC7) explain a significant amount of variation in

color phenotypes (Table S2); however, these PCs each account for

a small fraction of total genetic variation in our dataset (2.44%

and 2.04%, respectively). Taken together, these results indicate

that there is no major axis of genetic variation correlated with

color phenotype. Nonetheless, all GWA mapping analyses we de-

scribe below implement methods to correct for minor levels of

genetic structure among individuals (see Methods).

GENETIC CONTROL OF T. podura COLOR PHENOTYPES

ESTIMATED THROUGH GWA MAPPING

Hyperparameters estimated from BSLMMs indicate that color

variation in T. podura is controlled by a simple genetic architec-

ture with 97% of phenotypic variation being explained by geno-

type and 94% of this explained variation being due to two SNPs

with measurable phenotypic effects (median estimates; Fig. 2 for

complete posterior distributions). Similar results were obtained

for T. cristinae with 95% of phenotypic variation in color being

explained by genotype and 95% of this explained variation being

due to seven SNPs with measurable phenotypic effects (median

estimates; Fig. 3; Comeault et al. 2015).

Two SNPs in the T. podura dataset were identified as having

measurable effects on color phenotypes in > 10% of BSLMM

iterations (i.e., PIPs > 0.10; blue points in Fig. 3B). Both of these

SNPs map to LG 8 of the T. cristinae genome: one at position

10972 of scaffold 1806, 13.6 kb from the nearest gene annotation

and the second at position 349343 of scaffold 284, 4.3 kb from

the nearest gene annotation (see Supporting Information File S1

for InterPro or GO annotations for each predicted gene located on

these two scaffolds and the candidate scaffold identified by single-

SNP GWA mapping [results presented below]). The PIPs of these

SNPs are 0.295 and 0.102, their model-averaged estimates of β are

9.92 and 4.25, respectively, and melanistic alleles are recessive to

green alleles (d/a = –1 and –0.95, respectively; Fig. 4).

Cross-validation analyses revealed that hyperparameter esti-

mates and effect sizes reported above are unlikely due to chance.

For example, BSLMM analyses repeaed using randomly per-

muted phenotypic datasets did not recover any SNP with measur-

able effects on phenotypic variation in > 10% of model iterations

and confidence intervals for hyperparameter estimates spanned

nearly the entire interval [0, 1], indicating a strong genetic sig-

nal within our observed data (Fig. S2). This strong genetic signal

was also confirmed by our ability to accurately predict the pheno-

type of individuals from genotypic information alone (prediction

accuracy = 96.8%).

Single-SNP GWA mapping in T. podura identified two SNPs

that are associated with color phenotypes that also map to the

T. cristinae genome assembly (significance level: P < 0.000001;

Table S3). One of these SNPs mapped to LG 8 (scaffold 1154;

position 30072) and the second to LG 10 (scaffold 380; posi-

tion 189546). Dominance relationships between alleles at these

two SNPs mirror those of the SNPs identified by multi-SNP

mapping with green alleles being dominant to melanistic alleles

(d/a = –0.95 and –0.94, respectively; Fig. 4). Because LG 8 has
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Figure 2. Posterior probability distributions of parameter estimates describing the genetic architecture for color in T. podura (solid grey

lines) and T. cristinae (dashed black lines). The total amount of phenotypic variation explained by genotype (PVE) and the proportion of

that variation that can be explained by SNPs with nonzero effects on phenotypic variation (PGE) are given, along with the number of

SNPs in our dataset that have nonzero affects on phenotypic variation (N-SNP).

Figure 3. Genome wide association mapping of SNPs associated with color variation in T. podura and T. cristinae. (A) Mean posterior

inclusion probabilities (PIPs) for SNPs mapping to each of the 13 T. cristinae linkage groups (LGs). Error bars represent one standard error.

(B) Manhattan plots showing associations between SNPs and color phenotypes in T. podura and T. cristinae. SNPs significantly associated

with color in the single-SNP analyses (P < 0.00001) are shown as red points above the horizontal line and the LG 8 candidate SNPs

identified by multilocus GWA mapping are shown as solid blue points.

the highest density of candidate SNPs identified by both multi-

locus and single-SNP GWA mapping in both T. podura and T.

cristinae (Table S3 for results from T. podura and Comeault et al.

2015 for results for T. cristinae), we focus our remaining analyses

on this LG.

COLOCALIZATION OF REGIONS ASSOCIATED

WITH COLOR IN THE TWO SPECIES

We explored whether SNPs associated with color variation were

statistically concentrated on LG 8 by calculating the mean

PIP for SNPs within each LG. Previous work in T. cristinae
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Figure 4. Dominance relationships between alleles at candidate SNPs associated with color variation in T. podura. Mean phenotype

(bars) and 95% binomial confidence intervals (vertical lines; computed using the “binconf” function in R) are shown for genotypes at each

of four candidate SNPs identified by multi-SNP (left two panels) and single-SNP (right two panels) GWA mapping. The location of the

candidate SNPs are given above each panel: linkage group (lg) and scaffold (scaf) are given before the position (in bp). Ratios above each

bar report the number of melanistic individuals that have that genotype over the total number of individuals with that genotype. Green

individuals are scored as “0” and melanistic individuals as “1.” Based on allele frequencies within this sample of individuals, segregation

of genotypes at each SNP did not significantly differ from Hardy–Weinberg expectations (all P > 0.1).

suggests that SNPs associated with color were concentrated on

LG 8 (Comeault et al. 2015). We confirmed this result (Fig. 3A).

In T. podura, mean PIP also differs significantly across the 13

LGs (proportion test; χ2 = 2,1731.33, d.f. = 12, P < 0.001) and

SNPs mapping to LG 8 had the highest mean PIP of all LGs (mean

PIP = 0.000111; Fig. 3A). This mean PIP was nearly an order of

magnitude greater than the LG with the second largest mean PIP

(LG 1; mean PIP = 0.0000194). The two candidate scaffolds we

identify for T. podura were both located on LG 8 and had mean

PIPs of 0.0118 and 0.00161 (scaffolds 1806 and 284). Random-

ization tests showed that the colocalization of candidate SNPs in

T. podura and T. cristinae to LG 8 is unlikely to happen by chance

(P = 0.0067); however, within LG 8, candidate SNPs mapped

to different scaffolds in the two species and we do not have the

resolution to determine whether there is further colocalization of

functional variation.

LINKAGE DISEQUILIBRIUM BETWEEN CANDIDATE

SNPS AND WITHIN CANDIDATE GENOMIC REGIONS

Genotypes at LG 8 candidate SNPs are in strong LD within T.

podura and T. cristinae (median r2 = 0.81 and 0.46, respec-

tively), and all estimates of LD between candidate SNPs are

greater than the 97.5% empirical quantile of genome-wide LD

(Table 2). The higher LD observed between T. podura candi-

date SNPs could be due to there being fewer candidate SNPs

identified for T. podura compared to T. cristinae (3 vs. 26) and

the fact that the T. podura candidate region spans a shorter ge-

nomic distance than the T. cristinae candidate region (combined

scaffold lengths of candidate region = 8.1 Mb and 12.7 Mb,

respectively).

Linkage disequilibrium within the candidate genomic re-

gion that contains candidate SNPs in T. podura is 28.3% greater

than median genomic LD (P < 1 × 10–15; Table 2) while LD

within the noncandidate region is not elevated relative to median

genomic LD (P = 1; Table 2). Linkage disequilibrium within the

T. cristinae candidate genomic region is also greater than me-

dian genomic LD, but even more strongly so than in T. podura

(i.e., 113.4% greater than mean genomic LD; P < 1 × 10–15;

Table 2). This large difference in LD within the “candidate” ver-

sus “background” regions was observed despite the T. cristinae

candidate region spanning 12,739 Kb (vs. 8135 Kb in T. podura),

containing roughly twice as many SNPs as the T. podura candi-

date region (1171 and 499 SNPs, respectively), and the average

mean-distance between SNPs contained on candidate scaffolds

being roughly equal (112 [SD = 67] Kb in T. cristinae and 109

[94] Kb in T. podura). In contrast to T. podura, LD within the

noncandidate region of LG 8 in T. cristinae is also elevated (P <

1 × 10–15; Table 2). Linkage disequilibrium is therefore elevated

within the candidate region on LG 8 in both species, however this

LD is more pronounced, and extends across a longer genomic

distance, in T. cristinae compared to T. podura.

Supporting this finding, the decay of LD with distance

was the same for each linkage group in the T. podura sample,

with LD falling to genomic background levels within �100 bp

(Fig. 5). By contrast, in T. cristinae LD within LG 8 remains

elevated over larger genomic distances when compared to the

genomic background (Fig. 5).

EVOLUTION JUNE 2016 1 2 9 1



AARON A. COMEAULT ET AL.

Table 2. Linkage disequilibrium, calculated as genotypic correlations (r2) between pairs of SNPs.

a) T. podura
Genomic scale r2 P > genome

Candidate SNPs 0.8116 (0.7715–0.8931) < 0.00001
Candidate region 0.0179 (0.0000–0.2423) < 0.00001
Noncandidate region 0.0144 (0.0000–0.2083) 1
LG 8 0.0150 (0.0000–0.2162) < 0.00001
Genome 0.0139 (0.0000–0.1992) n/a

b) T. cristinae
Genomic scale r2 P > genome
Candidate SNPs 0.4602 (0.0619–1.0000) < 0.00001
Candidate region 0.0323 (0.0001–0.4281) < 0.00001
Noncandidate region 0.0189 (0.0000–0.2602) < 0.00001
LG 8 0.0211 (0.0000–0.2941) < 0.00001
Genome 0.0151 (0.0000–0.2054) n/a

Median r2 and confidence intervals are reported for groups of SNPs sampled at different genomic scales (see methods for details). The confidence interval

reported for candidate SNPs represents the minimum and maximum LD observed between any pair of candidate SNPs, while for all other SNP classes

confidence intervals are reported as 95% equal tail-probability intervals. “P > genome” represents the probability that the proportion of LD within a given

class of SNP with r2 greater than median genomic LD was observed by chance.
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Figure 5. Decay of LD with distance in both T. podura and T. cristinae. The median (solid lines) and 99% quantile (dashed lines) of r2 is

plotted for SNPs binned by the distance between them. Distances were binned every 100 bp from 1 to 1000 bp. Each linkage group is

plotted independently and LG 8 is highlighted in black (all other LGs in grey).

Discussion
Our results show that similar color phenotypes of T. podura and

T. cristinae largely overlap in two-dimensional color space, with

strong divergence between color morphs within species (Fig.

1B). In addition to the similarities we observe at the phenotypic

level, we show that color phenotypes in T. podura and T. cristinae

share at least three aspects of genetics. First, color phenotypes

in both species are controlled by major effect loci (Fig. 2).

Second, dominance relationships of alleles associated with color

phenotypes are the same between these two species, with green

alleles dominant to melanistic alleles (Fig. 4; Comeault et al.

2015). Third, the same LG is implicated in each species, with

genotype—phenotype associations colocalizing to LG 8. These

results generate the testable hypothesis that the same gene (or

group of genes) might control color in these two species. Future

work is required to test this hypothesis, for example using fine

scale mapping and analyses of synteny. Such tests could allow

interesting parallels (or differences) to be drawn with other

species, such as Heliconius butterflies, where genetic variation

affecting aposematic color phenotypes found in multiple species

has been shared through introgression (Dasmahapatra et al. 2012;

Wallbank et al. 2016). Below we discuss the implications of our
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current findings, including those that do not rely on resolving the

causal variants affecting color, along with additional questions

that could be resolved by elucidating such variants.

IMPLICATIONS OF GENETIC ARCHITECTURE FOR THE

RESPONSE TO SELECTION

Important insights into the evolutionary process can be gained

through an understanding of quantitative aspects of the genetics

of traits involved in adaptation and speciation (Rausher and Delph

2015). As we describe in the methods of this manuscript, multi-

locus GWA mapping using BSLMMs provides advantages over

single-SNP GWA analyses because it provides estimates of three

hyperparameters that quantitatively describe aspects of genetics

of traits while accounting for uncertainty in the specific SNPs

(and genes) causally associated with phenotypic variation (Zhou

and Stephens 2012; Zhou et al. 2013). These hyperparameters—

namely the number of genetic regions underlying phenotypic vari-

ation, the “polygenic” component of phenotypic variation, and the

amount of phenotypic variation explained by SNPs with measur-

able effects on phenotypic variation—can be useful in helping

predict the phenotypic and genetic response to selection. Our re-

sults predict that selection acting on color in populations of T. po-

dura and T. cristinae will result in strong divergence at the genetic

regions underlying those color phenotypes. Moreover, patterns of

LD suggest that selection acting on color phenotypes in T. podura

could have less of an effect on neighboring sites in the genome

than in T. cristinae, because LD within the genomic region con-

trolling color is low in T. podura when compared to T. cristinae.

LD affects the genomic response to selection and can be

generated by several mechanisms. For example, elevated LD can

represent regions of reduced recombination (e.g., due to struc-

tural variation such as chromosomal rearrangement; Lowry and

Willis 2010) or positive, correlated, or epistatic selection (e.g.,

Kim and Nielsen 2004). These are not mutually exclusive mech-

anisms because selection can favor structural rearrangements that

capture multiple alleles that positively affect fitness (Kirkpatrick

and Barton 2006; Feder et al. 2013). In T. cristinae, the mech-

anisms generating high LD on LG 8 are unknown, but the size

of the region affected (28.25% of this linkage group) hints at the

possibility of a large-scale inversion polymorphism. In T. podura,

the genomic extent and magnitude of LD within the candidate

region is less than in T. cristinae, suggesting a lack of struc-

tural variation, more ancient structural variation (i.e., allowing

more time for recombination), or recent, but weaker, selection

(Table 2). Future work could usefully test these explanations for

variation in LD in these and other Timema species.

Dominance relationships at the locus that controls color in

the studied species will result in melanistic alleles being hid-

den from selection in heterozygous individuals. This will have

two general effects on the evolutionary response to selection:

(1) recessive melanistic alleles will be maintained within popu-

lations when they are maladaptive longer than green alleles and

(2) dominant green alleles will be able to respond to selection

more quickly than melanistic alleles when found at low frequen-

cies in a population. In T. podura the melanistic phenotype, to

our knowledge, is fixed within populations living on Adenostoma

(Sandoval and Nosil 2005), suggesting that there is strong se-

lection acting against the green phenotype on Adenostoma. This

idea is supported by predation experiments that have shown that

green T. podura are more heavily depredated than melanistic T.

podura on Adenostoma, while the opposite is true on Ceanothus

(Sandoval and Nosil 2005). Another explanation for the lack of

green individuals within Adenostoma populations is that the green

allele has never reached these populations. This however seems

unlikely based on the geographic proximity of T. podura popula-

tions found on either host (i.e., scale of a few kilometers) and high

rates of gene flow among adjacent populations of other species

of Timema at similar or even larger scales (Nosil et al. 2012).

Given the T. podura population analyzed for this study was from

Ceanothus, it is surprising that we find green alleles at a much

lower frequency than melanistic alleles (Fig. 5). A combination

of factors could contribute to the higher frequency of melanistic

alleles we observe in the population of T. podura studied here,

including recent colonization, unmeasured sources of selection

favoring melanistic individuals (differential survival measured by

Sandoval and Nosil 2005 was based on short-term predation by

a single predator: Western scrub jays [Aphelocoma californica]),

the ability of melanistic alleles to hide from selection in heterozy-

gotes, or high rates of directional gene flow from Adenostoma to

Ceanothus.

Influences of genetics on evolution have been shown in T.

cristinae (Comeault et al. 2015) and other systems (Rosenblum

et al. 2010). For two species of lizard living on the white sands of

New Mexico (Sceloporus undulatus and Aspidoscelis inornata),

Rosenblum et al. (2010) showed that dominance relationships be-

tween derived “white” alleles are dominant to “brown” alleles

at the melanocortin receptor 1 locus (Mc1R) in S. undulatus but

recessive in A. inornata. These differences in dominance rela-

tionships underlie different patterns in the segregation of genetic

variation within populations of these lizards living in white-sand

environments. This example helps illustrate how understanding

the genetic basis of phenotypic variation can help us understand

how selection structures genetic and phenotypic variation in nat-

ural populations. In turn, genetic architecture itself can evolve,

as might occur for dominance relationships in Heliconius butter-

flies (Le Poul et al. 2014). The results we present here will help

inform such predictions in populations of Timema and can be

used to develop a better understanding of speciation through inte-

grating data describing links between phenotypes, genotypes, and

fitness.
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CONCLUSIONS AND FUTURE DIRECTIONS

While a quantitative understanding of the genetic basis of color

in T. cristinae and T. podura helps generate predictions regard-

ing patterns of genetic differentiation, identifying the causal al-

leles (and mutations) controlling these color phenotypes would

facilitate a better understanding of the evolutionary history of

this variation (e.g., Colosimo et al. 2005; Linnen et al. 2009;

Wallbank et al. 2016). For example, do color phenotypes repre-

sent an ancestral polymorphism segregating within populations

that may have been differentially and independently sorted in the

different species? While a phylogeny does exist for Timema (San-

doval et al. 1998), green/melanistic-like color polymorphisms are

pervasive across species (Crespi and Sandoval 2000), making it

difficult to infer the ancestral color (or colors) of this group.

If color alleles are segregating from ancestral variation, Timema

color phenotypes could share similarities with lateral armor plates

in stickleback where low-plated alleles at the Ecotdysplasin locus

(Eda) have been reused during adaptation to fresh-water environ-

ments from standing genetic variation segregating in marine popu-

lations (Schluter and Conte 2009). Such examples would suggest

a bias toward the recurrent evolution of the same color pheno-

types across different environments. Alternatively, color pheno-

types could be the result of independent evolution occurring at

different sites in the same locus or in different loci (Steiner et al.

2009). If the same locus or type of mutation (e.g., cis-regulatory

mutations) is involved in the evolution of color in Timema, this

could suggest a role of mutational biases in influencing evolu-

tionary trajectories. Streisfeld and Rausher (2011) showed that

the evolution of floral pigment intensity is biased toward mu-

tations occurring in transcription factors while the evolution of

floral hue is biased toward mutations occurring in coding regions

of pathway genes. In light of these examples, identifying causal

variants affecting color in Timema would help to inform key de-

bates in molecular evolution, such as whether constraints exist in

the genetic changes leading to adaptation (Stern and Orgogozo

2009), and the extent to which genes involved in adaptation have

pleiotropic effects (Rennison et al. 2015).

The recent increase in our understanding of the genetic basis

of adaptive traits in Timema stick insects (Comeault et al. 2014,

2015), genomic resources in this system (Soria-Carrasco et al.

2014), and genome editing methods in general (Bono et al. 2015),

could help to facilitate the discovery of the specific gene or genes

underlying these phenotypes.
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Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Admixture proportions estimated for 50 individuals genotyped at 56,149 SNPs using hierarchical Bayesian models with K=2-4.
Figure S2. Median and 95% equal-tail posterior probability interval (ETPPI) of hyperparameter estimates from Bayesian sparse linear mixed model GWA
mapping carried out on our original T. podura GBS data sets (‘observed’) and five data sets where phenotypic values was randomly permuted among
individuals (permuted-1 through permuted-5). a) PVE, b) PGE, and c) n-SNP.
Table S1. Deviance information criterion (DIC) model selection results of the admixture analysis for K=1-4 based on 56,149 SNPs from 50 individuals.
Table S2. Results of PCA carried out on the matrix of imputed genotypes of the 50 T. podura.
Table S3. Candidate SNPs associated with color phenotypes in T. podura as identified through multi-locus and single-SNP GWA mapping.
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